- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002100000000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Xu, Lanyu (3)
-
Li, Yunge (2)
-
Fu, Huirong (1)
-
He, Ze Hao (1)
-
Meyer, Devin (1)
-
Saha, Shaibal (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Panoptic perception models in autonomous driving use deep learning models to interpret their surroundings and make real-time decisions. However, these models are susceptible, carefully designed noise can fool models all while being imperceptible to humans. In this work, we investigate the impact of blackbox adversarial noise attacks on three core perception tasks: drivable area recognition, lane line segmentation, and object detection. Unlike white-box attacks, black-box attacks assume no knowledge of the model’s internal parameters making them a more realistic and challenging threat scenario. Our goal is to evaluate how such an attack affects the model’s predictions and explore countermeasures towards such attacks. In response to our implemented attack, we have tested various defense methods. With each defense method, we have assessed the recovery on prediction accuracy. This research aims to provide valuable insights into the vulnerabilities of panoptic perception models and highlights strategies for enhancing their resilience against adversarial manipulation within real-world scenarios. All our attacks are performed against images from the BDD100K dataset.more » « lessFree, publicly-accessible full text available October 6, 2026
-
Li, Yunge; Saha, Shaibal; Xu, Lanyu (, 2024 IEEE International Conference on Mobility, Operations, Services and Technologies (MOST))Object detection plays a pivotal in autonomous driving by enabling the vehicles to perceive and comprehend their environment, thereby making informed decisions for safe navigation. Camera data provides rich visual context and object recognition, while LiDAR data offers precise distance measurements and 3D mapping. Multi-modal object detection models are gaining prominence in incorporating these data types, which is essential for the comprehensive perception and situational awareness needed in autonomous vehicles. Although graphics processing units (GPUs) and field-programmable gate arrays (FPGAs) are promising hardware options for this application, the complex knowledge required to efficiently adapt and optimize multi-modal detection models for FPGAs presents a significant barrier to their utilization on this versatile and efficient platform. In this work, we evaluate the performance of camera and LiDARbased detection models on GPU and FPGA hardware, aiming to provide a specialized understanding for translating multi-modal detection models to suit the unique architecture of heterogeneous hardware platforms in autonomous driving systems. We focus on critical metrics from both system and model performance aspects. Based on our quantitative implications, we propose foundational insights and guidance for the design of camera and LiDAR-based multi-modal detection models on diverse hardware platforms.more » « less
An official website of the United States government

Full Text Available